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Abstract The Source of random static electrical fields, which is determined by both the 
piezoelectric coupling and the static elastic d e f a d o n s  induced by substitutional disorder of 
ions with different ionic radii has been considered for mixed crystals of the KHzPO4 family. It is 
shown that the random electrical fields act mainly on the lanice polarization along the c axis and 
updown proton configurations. 'The shon-range interactions of fow acid protons surrounding 
a POa group are represented as the random local uniaxial anisotropy for the mixed crysrals 
provided the ice rule condition is fulfilled. It is also shown that the distinction of symmetry 
behveen the updown and lateral protan configuration. and the peculiarities of proton-lattice 
interaction can lead to the coexistence of long-range order (for updowwlateral configuration) 
with the glass or paraelectric (for latediup4own configuration) stale. 

1. Introduction 

In study of the glass state, one frequently meets examples of glass states that are 
impossible to describe solely by random interaction [l-51. This leads to the necessity 
to discuss alternative sources of disorder (such as random fields, random anisotropy, etc.) 
simultaneously with the random interaction. Disordered systems that cannot be described by 
taking into account only the random interaction between moments are mixed crystals of the 
potassium dihydrogenphosphate (KH2PO4. KDP) family, for example, rubidium ammonium 
dihydrogenphosphate, (Rbj-x(N&)xH2P04, RADP) [&8]. The phase diagram of RADP [9- 
111 shows that, for 0.0 < x < 0.22, a ferroelectric (FE) phase and, for 0.74 e x e 1.0, 
an antiferroelectric (AF) phase are observed, while for the intermediate concentration, 
0.22 < x < 0.74, the crystals remain in a paraelectric (PE) phase and manifest glass-like 
properties on cooling [9-111. This glass-like state is called a proton glass (PG). Initially, it 
was assume that the type of order in RADP was determined by the NI&-mediated interaction 
between acid protons belonging to different PO4 groups [12]. To describe the PG state, a 
random-bond Ising model was proposed [13]. However, the freezing of the acid protons 
occurs over an unusually large temperature interval far above the glass transition temperature 
T, [2,6,8]. As a result, the necessity appeared for random local fields to be included in the 
description of the glass state. For this purpose, a random-bond king model with a random 
field was proposed [7]. The random local fields in RADP are assumed to be determined by the 
off-centre positions of groups, which induce a random tilt in the double-well potentials 
of the acid protons r6-81. It is important to note that, although jumps of NH4 between 
the off-centre sites are much slower than interbond jumps of acid protons between the two 
possible equilibrium sites [14], the random local fields induced by the off-centre NHJ groups 
are not, in the strict sense, static fields. Brillouin-scattering investigations of RADP have 
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shown that a static central peak emerged in addition to a dynamic central peak [15-171. 
The static central peak can be explained in te rm of freezing of acid protons in the random 
static fields on the timescale of Brillouin scattering. The static local fields are also found by 
nuclear magnetic resonance (NMR) [8, 181 and electron paramagnetic rsonnnce (EPR) [19] 
measurements at all temperatures. Consequently, it is necessary to study alternative sources 
of random local fields that generate the static fields and are not necessarily determined by 
the off-centre position of NH4 groups. 

The special feature of the random local fields in RADP is an asymmetry of their influence 
on the freezing of acid protons. So, the onset of freezing of acid protons in the PE phase 
occurs at higher temperature for the range of x on the Rb-rich side than for the range of 
x on the NH4-rich side [9-11]. Brillouin-scattering results also show that the range of the 
activation energy distribution on the Rb-rich side is wider than on the NH4-rich side [ 161. 
Therefore the feature of the random local fields mentioned above must be taken into account 
for an investigation of new sources of random local fields. 

The polarization of KDP family crystals can interact both linearly (piezoelectric coupling) 
and quadratically (electrostriction) with the elastic deformation [15, 161. The type of 
coupling of the polarization with elastic deformation depends on the content of N€b groups. 
So, the piezoelectric coupling is the dominant coupling mechanism for x --f 0, whereas the 
electrostriction is the main coupling mechanism for x + 1 in mixed crystals of RADP type 
[ 161. As a rule, for any mixed crystals, the substitutional disordered ions with different ionic 
radii generate static random elastic fields [3,41. The piezoelectric coupling and the random 
elastic fields can give rise to random electric fields. The importance of this mechanism 
for glass state formation was noted in a review [9]. These random fields enable us to 
understand not only the nature of the static central peak and asymmetric proton freezing 
mentioned above but also the nature of the dynamic central peak. which can be understood 
as the action of weak random electric fields via lattice anharmonic interaction [I71 (e.g. 
electrostriction) as well. Hence, even weak random electric fields play an important role in 
glass state formation and need to the considered. 

It should be pointed out that the random-bond king model with a random field [7] does 
not take into account an ice rule condition (two protons per PO4). In KDP family crystals, the 
configurations of acid protons follow the ice rule condition [ZO]. Although the investigation 
of the glass state in the KDP family under the ice rule is a more difficult problem than study 
of the glass state in, for example, KBrl-,CN, and K1-,LiXTaO,, it is clear that the ice rule 
condition must be taken into account in investigation of the PG state. The theoretical study 
of the PC state under the ice rule condition has been done elsewhere [12,21-231, but they 
did not take into consideration the interactions between up-down proton configurations, the 
existence of random static fields, and the possibility of coexistence of long-range order with 
the glass state. 

In this work we will propose to use the pseudovector representation for the lowest Slater 
proton configurations instead of the psendospins of acid protons. Within this representation, 
we will present the short-range interaction of acid protons surrounding a PO4 group as 
a random local anisotropy for mixed crystals of RADP type, provided that the ice rule 
condition is fulfilled. Then we will investigate the source of the static random electric 
fields based on both the piezoelectric coupling and the static random deformation induced 
by the difference in ionic radii between the substitutional ions in the mixed crystals. It 
will also be shown that the piezoelectric coupling decreases as x + 1 in mixed crystals of 
RADP type. From the distinction of symmetry between the up-down and the lateral proton 
configuration, and from the peculiarities of proton-lattice interaction, we will show that the 
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coexistence of long-range order (for updownilateral configuration) with the glass state (for 
laterallupdown configuration) can take place in mixed crystals of RADP type. 

2. Ice rule and model Hamiltonian 

Before proceeding to a consideration of proton-lattice interactions, we have modified the 
representation for the lowest Slater configurations of acid protons and short-range interaction 
of four protons associated with a PO4 group given in [12,22,23]. In order to describe the 
proton configurations in the KDP family, pseudospins ui(v). which take value + I  or -1 
for the two possible positions of ith proton, are introduced. The Hamiltonian of short- 
range interaction in clusters of four spins ul ( T )  (r is the position of the PO4 groups, and 
i, j = 1 4  are the indexes of protons surrounding the PO4 group) is given by 

In RADP it is assumed that each HzPO4 cluster has arandom set of parameters (U, V) that 
is determined according to RDP-like (€0 = 4(V - U) > 0) or ADP-like (€0 i 0) surrounding 
[22,23]. Among the 16 possible states of protons surrounding a PO4, only the six lowest 
Slater configurations of protons (updown and lateral) have two protons near PO4 group 
(HzP04) [20]. Following [22,23], the condition 

U, (T) + U d T )  + U3(T) + U4(T) = 0 (2) 

is realized for the lowest Slater configurations of protons. Equation (2) is the ice rule 
condition. 

Let us introduce the components of pseudovector S in the form 

.%(TI = + [ U l ( T )  + PZz(T) - 03(T)  - U4(T)1 

&(T)  = +ru,(T) - 4 T )  + 03(T )  - 0 d T ) l .  

( 3 4  

(3b) 

(3c) 

S A T )  = $1 (PI - s ( r )  - s ( r )  + U4(T)1 

The components Sa(?-) (a = x ,  y. z) can be represented as a unit vector that points along 
(100) directions 

S(r) = eJ&) + ey&(T) + e,S,(T) (4) 

where Sup is the Kronecker symbol (or, p, y = x ,  y ,  z). 

condition (2) and substituting in H ~ ( T ) ,  we have 
Expressing q(r) in terms of components Se (equations (3nW3c)) under the ice rule 

H ~ ( T )  = -<o(r)S:(r) for €0 > 0 (5 )  

H4(T) = co(T)[S:(T) + s;(T)J for €0 < 0. (6) 
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Close inspection of equations (5) and (6) shows that H6 can be represented in  the form 
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Hs = - Ito(~)l[L(~)S(r)l~ L2(r)  = 1 (7) 
r 

where vector L points along one of (100) directions (L(r)lle, for Q(T)  > 0 and L(r)llez, ey 
for @(T)  < 0). 

One can see from Hs in (7) that the random sign of EO(T)  is similar to the random local 
uniaxial anisotropy [I]. 

In view of the fact that the short-range interaction characterized by the parameter €0 
is greater than other interactions in crystals of the KDP family, the random local uniaxial 
anisotropy (7) has to be strong. In this case vector S can be written in the form 

Here s, takes value +l  and -1 for the up-down configurations; s, and sy are components 
of a vector that points along one of [loo], [i00], [OIO]. [OiO] directions and describes the 
lateral configurations; ri are sites for 60 > 0 and Ni (1 - x  = N i / N )  is the number of sites; 
rj  are sites for €0 -= 0 and Nj (x  = N , / N )  is the number of sites; and N is the number of 
PO4 groups. 

3. Piezoelectric coupling and random fields 

Let us now turn to a consideration of the interactions of acid protons with acoustic and 
low-frequency optical phonons. The vibrations of displacements of the centre of mass of 
a unit cell u‘(r) are known to define the acoustic phonons. The Hamiltonian of acoustic 
phonons has the well known form 

where u’(k) is the Fourier transform of U’(?-): 

U’(?-) = - Ce’kru’(k) .  N112 li 

Hereafter we will use the notations u(k) = u’(k)M’/* and A(k)  = A ’ ( k ) / M .  
Let us consider the effect of substitutional disorder of ions with different ionic radii in 

the lattice. Substitutional disorder can be the reason for static displacements of the centres 
of mass. The distinctive property of the disorder discussed above is the concentration 
dependence of the lattice constants [24]. So, the concentration dependence of lattice 
constants is observed in RADP I l l ]  also. Hence it is necessary to discuss these effects 
of disorder to understand the type of order in RADP. It is convenient to present the density 
of local forces with the help of an elastic dipole moment tensor, 0.0, The tensor 0 , ~  is 
defined by the relation 1251. 

~i~~ = - ~ ~ p ( ~ ) ~ ~ p ~  = -i %p(k)keu,9(k) (104 

= 4[au,(r)/ar,  + aup(r)/ar,] ( lob)  

r.op h.US 

Qwp(r)  = ( % , B / M ~ ” ) & J ( ~ )  A P ( ~ )  = & ,  - x ( W  
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where ~i are the positions of ions with concentration x, and M is the average mass per unit 
cell. In this paper it is assume that only the dilatational part C2.p = 5216,p determines the 
size of the elastic dipole tensor, whereas the quadrupole part is negligibly small. 

The new equilibrium positions induced by the substitutional disorder are determined 
by minimizing the elastic energy Hl = Ua + Himp. Results of minimization determine the 
contribution to the new displacements of the centres of mass of unit cells 

Y&) = up(W - $(k) = u p ( W  f i ~ k y [ Q ( ~ ) A - ' ( k ) l p y  (11) 

where $!k) is the Fourier transform of the static displacement induced by the substitutional 
disorder in the approximation of isotropic elastic medium [24]. Taking into account 
equation ( l l ) ,  Hamiltonian (6) can be written in the form 

Ha = 4 cIP(k )Y( -k )  + ~ ~ a ( k ) A w d k ) ~ p ( . l c ) l -  

Y 

c k y k , , [ n ( k ) A - ' ( k ) n ( k ) l y y , .  
k UP w ' k  

(12) 

The last term of Hamiltonian (12) is the indirect interaction of elastic dipoles via acoustic 
phonons. In this work it is assumed that the indirect interaction is negligible and can be 
ignored. It should be noted that a similar indirect interaction was considered for KBrl-,CN, 
[3] and Kr-,Li,TaOa [4,26]. 

The vibrations of the displacements $ ( T )  (m is the index of displacement of ions 
relative to the position of the centre of mass) are known to determine optical phonons in 
the lattice. The Hamiltonian of the optical phonons has the usual form 

Here x,(k) is the normal-mode coordinate for the uth optical branch of frequency o,(k), 
eim are components of the polarization vector and p ,  is the reduced mass. 

In the following we shall restrict our consideration only to cases of low-frequency optical 
phonons of Bz (U = 1) and E (U = 2) symmetries. The optical modes of Bz symmetry 
are determined by RbHzP04 vibrations. RbHlP04 groups form the lattice polarizations 
along the c axis [U]. The optical E modes are determined by Nh-HzP04 vibrations. 
NH4-H2P04 groups form the lattice polarization in the plane a-b [U]. 

In the KDP family elastic deformation can interact with polarization via linear 
piezoelectric coupling as well as quadratic electrostriction coupling [28]. Here we shall 
restrict ourselves only to the case of linear piezoelectric coupling, which can be written in 
the form 
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In the long-wave limit the coupling coefficients Dl(k) are [29] 

D:(k) = D&kp D& = Diu (15) 

where D& are the components of a piezoelectric tensor D$ (Diy  = DtY. D;z = Dx 
0:; = D:, and the other D$ = 0). 

YZ'  

The conditions 

DtY >> D;z = D:z (16) 

are realized in the KDP family [28] .  From conditions (16) it follows that we can restrict 
our consideration to piezoelectric coupling DiY for Bz symmetry polarization along the c 
axis with the shift deformation uxy.  The piezoelectric coupling Hao in (14) is represented 
for pure crystals of the KDP family. In mixed crystals, as is seen from equation (1 l), the 
substitutional disorder induces random elastic fields. As a consequence, Hw needs to be 
represented with the help of ys(k). So, one obtains 

From equation (17) it follows that Ew(k) acts as the static random electric field on 
polarization along the c axis. For the random electric field, we have 

- 
Ew(W = 0, ERF(k)ERF(-k') 6kw.r(l - x)(D:,)'(nl)' (18) 

where an overbar represents configurational averaging. 
Let us introduce the interaction of pseudospins q ( ~ )  with acoustic phonons by means 

of piezoelectric coupling, as was done in [29] for pure KIP. This interaction can be written 
in the form 

H,, = c d ; ( r  - T ' ) u ~ ( T ) u ~ ( T ) .  
i,?T' 

It should be pointed out that the coefficients dA(r - T')  must possess properties identical 
with Dep(r - TI). So, the conditions 

d:y >> d:z = d;z (20) 

are realized for the components of piezoelectric tensor d$. Individual pseudospins q ( r )  
or their combination have to satisfy the necessary symmetrical properties. The Slater 
configurations s,, sy and s, possess the required symmetries, whereas the individual 
pseudospins have not. The s, configurations have BZ symmetry [27]. The configurations s, 
and sy have E symmetry 1271 and can interact with uyz and uxz via dCz and d& respectively. 
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Based on the symmetry properties of piezoelectric coupling and conditions (20), H,, can be 
represented in the form 

Here the strong uniaxial anisotropy (7) is taken into account. 

(1 l), Hs in (21) can be written in the form 
In view of the fact that the substitutional disorder generates the random displacements 

d& 
&(k) = i m k m $ ( k ) .  

U.P=X.Y 

Analogously to equation (181, the random fields &RF satisfy conditions 

ERFO = o I E R F ( ~ ) E R F ( - ~ ) I  * ~ ( 1 -  x ) ( ~ : , ~ ~ w I ) ~ .  (23) 
As is seen from equations (18) and (22), the random electric fields associated with 
piezoelectric coupling mainly act on the lattice polarization along the c axis and proton 
configurations sz. Because the polarization along the c axis and up-down configurations 
are determined by the ions with concentration 1 --x in mixed crystals of R ~ I - ~ ( N H & H Z P O ~  
type, this leads to a decrease in the piezoelectric coupling with x + 1. 

4. Coexistence of ordering with glass or paraelectric state 

In the KDP family the acid protons can interact with the low-frequency optical phonons 
by means of linear coupling [30]. So, the B. optical mode interacts with s, proton 
configurations, whereas E optical modes interact with s, and s, [271. The Hamiltonian 
of the interaction of the polarization and acid protons is 

H, = c f ; x i ( k ) % ( - k )  - fi"xz(kh(-k). (24) 
k 

(r=*.y 
k 

For mixed crystals of the KDP family, the Hamiltonian of the total proton-lattice coupling 

(25) 

without considering electrostriction and tunnelling is given by 

Htot = HF + RAF + HS 

with 

H F = l c ( .  2 xi (k)& (-k) + O:(k)xl (k)XI (-k)) 
k 
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where ye(k) and A(k)  are represented in more suitable forms by means of a deformation 
tensor y~ and elastic constants C, = CAAV (U is the volume of the unit cell); for A = 6, 
2y&) = yxy(k)  Lv.a = (l/M1/*)[k.y,&) + kpy&)l), d:y = d and DiY = D. The 
Hamiltonian Hs in (25) is given by (7). 

As seen from Hamiltonian (25), the protons are divided into two independent systems. 
(i) The acid protons from one system are associated with s, configurations placed in the 
s iks  with local uniaxial anisotropy along the c axis (5). These protons interact with both 
low-frequency Bz modes and acoustic modes. The piezoelectric coupling (D:y  and dz ) ‘Y and random elastic deformations induced by substitutional disorder generate random static 
electrical fields Ew (17) and ERp (22). which act on the lattice polarization along the c axis 
and s, configurations, respectively. (ii) The other system of protons associated with s x ,  sy 
configurations and arranged in positions with local uniaxial anisotropy perpendicular to the 
c axis has negligibly small piezoelectric coupling. Consequently, the main source of the 
random electrical fields for s, and sy may take place due to the off-centre position of N q  
ions [&SI. 

In addition, as follows from H,,, the cooperative properties of s, configurations are 
mainly defined by indirect interaction via the low-frequency optical B2 mode, while the 
cooperative properties of s,, s,. configurations are due to indirect interaction via the low- 
frequency optical E mode. As a consequence of disordered positions of s, and s,, sy 
configurations in systems of RADP type, random-sign indirect interaction terms appear in 
addition to terms of constant-sign indirect interaction. The terms of random-sign interaction 
are known to give rise to the ffi state. Hence the partitioning of H,,, (25) into HF and 
Hm can lead to a mixed phase that is characterized by the coexistence of the ordered state 
with glass or PE state, which was in fact observed recently [31] .  So, if x -+ 0, FE ordering 
occurs for s, configurations, whereas the PG state independently takes place for s, and sy 
configurations. If x --t 1. the PG state takes place for s,, while AF ordering occurs for 
s, and sy. For x - 0,5 ,  the PG state appears for s, as well as sx,sy configurations. Up 
to now, when studying the PO state in RADP, particular attention has been given to NH4- 
mediated indirect interactions of pseudospins u;(T) I6,8,12,32] and non-identity of s, and 
sy configurations [12]. This interaction can be derived from HAF. and non-identity of s, 
and sy may be obtained by means of the different coefficients of linear coupling with the 
low-frequency optical E mode. 

However, the understanding of ordering of acid protons in mixed crystals of KDP type 
is not possible without a theoretical consideration of Hamiltonian HF. Unlike Hm, terms of 
linear coupling s, configurations with the optical Bz mode result in the indirect interaction 
via Rb-POd groups. In addition, linear piezoelectric coupling (21) leads to electrical fields 
&RF that act on s, configurations. As a result, the effect of &RF gives rise to the onset 
of freezing of the acid protons at higher temperature for si configurations than for s,, sy 
configurations. 

It should be pointed out that the peculiarities of the phase transitions in mixed 
ferroelectrics M ~ P I - ~ A S ~ O ~  (for x = 0, T,j = 122 K and for x = I ,  T, = 96 K) 
[33,34]  can be described with the help of HF only, because in this case all the acid protons 
are in the form of s, configurations. Hence the investigation of cooperative behaviour of sz 
configurations is the urgent problem. 

I Smoiyaninov and M D Glinchuck 

5. Cooperative behaviour of sz configurations 

The study of the cooperative properties of s, configurations in RADP on the basis of HF 
is a complicated task, which requires taking into account the disorder effects both for the 
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system of acid protons and for the low-frequency optical Bz mode simultaneously. Let us 
restrict ourselves to the simplest case of site disorder of s, configurations. The optical Bz 
mode will be assumed to have no dependence on x and Em. We shall suppose also that 
the effective latticemediated interaction between s, configurations is mainly defined by the 
constant-sign interaction for the considered concentration range. 

We shall include the electrical fields &RF in the simple mean-field model by means of 
standard statistical-mechanical procedures [35,36] for random-field systems. The mean-field 
approximation for Hamiltonian HF has the form 

H F  = N f f ( x ~ ) ? G  - N d ( Y 6 ) I G  - Cff:(xl) - d ( Y 6 )  + & ( T ) I f z ( T i )  

- N 1 / z ( . Z ~ E -  f ~ ( s , ) ) ~ i ( 0 ) + f [ ~ 1 ~ 0 ) ’ + ~ ~ ~ O ~ ~ ~ 1 ~ 0 ) ’ 1  

f $[Y(O)Y(o) + Y 6 ( o ) c 6 6 ( 0 ) Y 6 ( 0 ) 1  f D Y 6 ( o ) X I ( o )  + N1’d(sL)y6fo) 

r, 

Here (XI) is the thermal average of displacement associated with the polarization along the 
c axis, ( y 6 )  is the thermal average of elastic deformation yxy ,  xl(0) and y6(O)  are nl(k) 
and ys(k)  for k = 0, E is the external electric field, and Z I  is the charge of the optic mode 
(U = 1). For the case of ‘free’ crystal x 6  = 0 ( x 6  is a shift strain X L y )  [28], the thermal 
averages ( x l ( 0 ) )  and (y6(0)) are found from the conditions [29] 

m i  3% /axl(o) = o = W : ( X ~ ( O ) )  - N I ~ ~ [ Z , E  + f : ( S 6 ( o ) ) i  + D ( Y ~ ( o ) )  
(29) 

a H ~ l a y s ( 0 )  = 0 = Ccx(~dO)) + N L / ’ d m +  D h ( 0 ) ) .  

Here ( x l ( 0 ) )  = N ‘ / ’ ( x I )  and ( y 6 ( O ) )  = N 1 / 2 ( y 6 ) ,  01 = ol(0). In the following discussion 
we shall restrict our consideration to the case of weak piezoelectric coupling (0’ < c66W: 

and dZ < ( y f ) ’ c 6 6 / W : ) .  Expressing ( y 6 ( O ) )  and ( x l ( 0 ) )  in terms of and substituting 
them into Hamiltonian (28), one obtains 

Hee = fN,,TS;i - (NZ:/24)(1 + D 2 / C 6 6 W : ) E 2  
2 

- e ( J o ( s L ) + p ~ . f f E + & R F ) S r ( T i ) + f W T ( l  - ~ 2 / ~ 6 ~ W ~ ) ~ ~ I ~ ~ ~ ~ ~ ( x 1 ~ ~ ~ ~ ~ 2  
I, 

+ f C 6 6 [ > ’ 6 ( 0 )  - (Y6(0))1’ + f C[il(k)i l ( -k)  + W l ( k ) 2 X l ( k ) X I ( - k ) l  
k#O 

with 
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where JO is the sign-constant indirect interaction between s, configurations, and p e ~  is an 
effective dipole moment. 

I Smlyaninov and M D Glinchuck 

Using Hamiltonian (30), the free energy is determined by 

From the condition aF/a(s,) = 0, we have for RmP-type systems 

- 
(sz) = ( 1  - x)(tanh[(Jom+ fie& -t &RF)/RTII. (32) 

Taking into account (29) and (32), the polarization P per unit volume is P = zl ( x ~ ) / u  and 
the dielectric susceptibility has the conventional form 

Here E= is the high-frequency dielectric susceptibility. It should be noted that the relation 
(35) is derived for mixed crystals of RADP type with low x .  Equation (35) was initially 
obtained by Schneider and Pytte [35]. Using the high-temperature expansion, parameter q 
can be presented by 

q - x ( I  -.r)S2:(d&)2. (37) 

In accordance with equations (35) and (37), the concentration dependence of T, is defined 
not only by the multiplicative factor (1 - x ) ,  which characterizes the up-down proton 
configurations, but also by the concentration dependence of q as well. 

From equations (23) and (37), it follows that the amplitude of the random elastic fields 
and q are described by the dilatational part of elastic dipole tensor S21, which is determined 
by the cell volume deformation due to the difference in ionic radii of substitutional ions. 
The ionic radii of Rbt, NH: and K+ are 1.48, 1.42 and 1.33 A respectively 191. The 
closeness of ionic radii Rbt and NH; is the reason for the small relative change of volume 
of unit cells Au/u - 0.005 191 of pure crystals (RDP and ADP) and the small value of S2, in 
RADP, whereas the ionic radius K+ markedly differs from that of m. This leads to the 
large relative change of volume of unit cells Au/v - 0.09 [9] for pure crystals (KDP and 
ADP) and large value of S21 in K1-x(NH4)zH2P0.+ 

For mixed ferroelectric crystals KH2P,-,AsXO4, the sign-constant lattice-mediated 
interaction of s, proton configurations and random electrical fields are crucial in ordering 
of acid protons. Without counting the small difference in the dipole moments of PO4 and 
As04 groups (T,] = Td),  the concentration dependences of E and Tc can be described by 
(33) and (35) in which the multiplicative factor (1 - x )  at JO and @zn is equal to 1. Then 
the concentration dependences of these parameters is defined by the random fields q (37). 
The relative change of volume of unit cells for KH2PO4 and KH2As04 is Au/u  - 0.08 [9] ,  
Hence the random electrical fields must be taken into account for the mixed ferroelectric 
crystals. 
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6. Conclusions 

We have shown that the random electric fields that are connected with piezoelectric coupling 
and random elastic fields produced by difference in ionic radii must be taken into account 
in investigations of the glass state for mixed crystals of the KHzPOd family. It is also 
shown that the piezoelectric coupling decreases as x + 1 in mixed crystals of RADP type 
and the random electric fields associated with the piezoelectric coupling mainly act on the 
polarization along the c axis and up-down configurations. The random electric fields in 
mixed ferroelectric crystals of the K H ~ P I - ~ A S ~ O ~  type are the chief cause of the disorder 
effects that are responsible for the glass state. It is demonstrated that the mixed crystals of 
W P  type have not only random-sign interaction between pseudospins and random fields but 
also random local anisotropy as well. The distinction of symmetry between the up-down 
and the lateral proton configurations together with the peculiarities of the proton-lattice 
interaction can give rise to the coexistence of long-range order (for the updowwlateral 
configurations) with the glass state (for IateraVupdown configurations). 
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